TECNOLOGIAS DE PERFILAMENTO E DADOS AGREGADOS DE GEOLOCALIZAÇÃO NO COMBATE À COVID-19 NO BRASIL
UMA ANÁLISE DOS RISCOS INDIVIDUAIS E COLETIVOS À LUZ DA LGPD
DOI:
https://doi.org/10.30899/dfj.v0i0.1020Palavras-chave:
Perfilamento, Dados de geolocalização, COVID-19, Riscos individuais e coletivos, Privacidade de grupoResumo
O presente trabalho visa analisar os riscos à privacidade e à proteção de dados pessoais – nas suas dimensões individual e coletiva – gerados pelo perfilamento baseado no uso de dados agregados de geolocalização de dispositivos móveis, buscando investigar a existência de parâmetros normativos encontrados na Lei Geral de Proteção de Dados (LGPD) aplicáveis aos riscos identificados. Para tanto, o artigo propõe as seguintes questões de pesquisa: (i) quais riscos aos direitos fundamentais à privacidade e à proteção de dados pessoais tecnologias de perfilamento baseadas no uso de dados agregados de geolocalização de dispositivos móveis geram nos níveis individual e coletivo na luta contra a pandemia de COVID-19 no Brasil? (ii) a LGPD prevê parâmetros normativos aplicáveis a fim de lidar com esses riscos, em especial a grupos criados a partir de sistemas algorítmicos? Na sociedade orientada por dados, o perfilamento automatizado tem importante função na infraestrutura da informação e da comunicação preponderante da computação preemptiva (preemptive computing). Neste contexto, dá-se a afirmação da dimensão coletiva dos direitos à privacidade e à proteção de dados pessoais. Os riscos detectados a ambos direitos, inclusive no âmbito coletivo ou de grupo, são o de reidentificação dos usuários de dispositivos móveis por ataques inferenciais (membership inference attacks) e de desvirtuamento de função e finalidade originária do tratamento dos dados. A fim de lidar com tais riscos, sugere-se uma interpretação sistemática de parâmetros normativos da LGPD, que tratam de perfilamento automatizado e de relatório de impacto à proteção de dados pessoais.
Referências
ALTMAN, Irwin. Privacy: A Conceptual Analysis. Environment and Behavior, v. 8, n. 1, p. 7–29, 1976.
ARCHARD, David. The Value of Privacy. In: CLAES, E.; DUFF, A.; GUTWIRTH, S. (Eds.). Privacy and the Criminal Law. Antwerpen-Oxford: Intersentia, 2006. p. 13-32.
ARTICLE 29 DATA PROTECTION WORKING PARTY. Opinion 5/2014 on Anonymisation techniques. Bruxelas: [s. n.], 2014. Disponível em: http://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf. Acesso em: 28 jul. 2020.
ARTICLE 29 DATA PROTECTION WORKING PARTY. Guidelines on Data Protection Impact Assessment (DPIA) and determining whether processing is “likely to result in a high risk” for the purposes of Regulation 2016/679. Bruxelas: [s. n.], 2017. Disponível em: https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=611236. Acesso em: 28 jul. 2020.
ARTICLE 29 WORKING PARTY. Guidelines on automated individual decision-making and profiling for the purposes of Regulation 2016/679. Brussels: [s.n.], 2018. Disponível em: https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=612053. Acesso em: 31 ago. 2020.
AULOOS, Jef; MAHIEU, René. Recognising and Enabling the Collective Dimension of the GDPR and the Right of Access. Disponível em: https://osf.io/preprints/lawarxiv/b5dwm. Acesso em: 03 set. 2020.
BENGTSSON, L. et al. Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: A post-earthquake geospatial study in Haiti. PLoS Medicine, v. 8, n. 8, p. 1–7, 2011.
BLOUSTEIN, Edward. J. Group Privacy: A Right to Huddle. In: _____. Individual and Group Privacy. New York: Routledge, 2017. p. 123-186.
BOSCO, Francesca et. al. Profiling technologies and fundamental rights: an introduction. In: CREEMERS, Niklas et. al. Profiling Technologies in Practice: Applications and Impact on Fundamental Rights and Values. Oisterwijk: Wolf Legal Publishers, 2017. p. 9-20.
BRASIL tem recorde de casos diários de Covid-19, mais de 65 mil. Folha de São Paulo, 22. jul. 2020. Disponível em: https://www1.folha.uol.com.br/equilibrioesaude/2020/07/brasil-tem-recorde-de-casos-diarios-de-covid-19-mais-de-65-mil.shtml. Acesso em: 22 jul. 2020.
BRASIL. Supremo Tribunal Federal (Tribunal Pleno). Ações Diretas de Inconstitucionalidade n. 6387, 6388, 6389, 6390 e 6393/DF. Relatora: Ministra Rosa Weber, 07 de maio de 2020.
BRASIL. Lei n. 9.472, de 16 de julho de 1997. Dispõe sobre a organização dos serviços de telecomunicações, a criação e funcionamento de um órgão regulador e outros aspectos institucionais, nos termos da Emenda Constitucional nº 8, de 1995. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/l9472.htm. Acesso em: 23 set. 2020.
BRASIL. Lei n. 13.709, de 14 de agosto de 2018. Lei Geral de Proteção de Dados Pessoais (LGPD). Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/L13709.htm. Acesso em: 28 ago. 2020.
BRKAN, Maja. Do algorithms rule the world? Algorithmic decision-making and data protection in the framework of the GDPR and beyond. International Journal of Law and Information Technology, v. 27, n. 2, p. 91–121, 2019.
COHEN, Julie E. Configuring the Networked Self: Law, Code, and the Play of Everyday Practice. New Haven: Yale University Press, 2012.
CORONAVIRUS in Latin America: What governments are doing to stop the spread. Global Americans, 26 mar. 2020. Disponível em: https://theglobalamericans.org/2020/03/coronavirus-in-latin-america/. Acesso em: 30 jul. 2020.
CORTE, Lorenzo Dalla. A Right to a Rule: On the Substance and Essence of the Fundamental Right to Personal Data Protection. In: HALLINAN, D. et al. (Eds.). Data Protection and Privacy: Data Protection and Democracy. Oxford: Hart Publishing, 2020. p. 27–58.
CUKIER, Kenneth; MAYER-SCHÖNBERGER, Viktor. Big Data: A Revolution That Will Transform How We Live, Work, and Think. Boston: Houghton Mifflin Harcourt, 2013.
DANEZIS, George et. al. Privacy and Data Protection By Design – From Policy to Engineering. [S.l.]: ENISA, 2015. Disponível em: https://www.enisa.europa.eu/publications/privacy-and-data-protection-by-design. Acesso em: 20 mai. 2020.
DE HERT, Paul; GUTWIRTH, Serge. Privacy, data protection and law enforcement: opacity of the individual and transparency of power. In: CLAES, Erik; GUTWIRTH, Serge; DUFF, Antony (Eds.). Privacy and the Criminal Law. Antwerpen-Oxford: Intersentia, 2006. p. 61–104.
DE HERT, Paul; GUTWIRTH, Serge. Regulating Profiling in a Democratic Constitutional State. In: HILDEBRANDT, Mireille; GUTWIRTH, Serge (Eds.). Profiling the European Citizen: Cross-disciplinary Perspectives. [S. l.]: Springer, 2008. p. 271–293.
DE MONTJOYE, Yves-Alexandre et al. Unique in the Crowd: The privacy bounds of human mobility. Scientific Reports, v. 3, p. 1–5, 2013.
DONEDA, Danilo; MENDES, Laura Schertel. Um perfil da nova Lei Geral de Proteção de Dados brasileira. In: BELLI, Luca; CAVALLI, Olga (Orgs.). Governança e Regulações da Internet na América Latina. Rio de Janeiro: FGV Direito Rio, 2018. p. 309–324.
DYE, Christopher et. al. Data sharing in public health emergencies: a call to researchers. Bulletin of the World Health Organization, v. 94, p. 158, 2016. Disponível em: https://www.who.int/bulletin/volumes/94/3/16-170860.pdf. Acesso em: 25 jun. 2020.
EUROPEAN DATA PROTECTION BOARD. Statement on the processing of personal data in the context of the COVID-19 outbreak. Disponível em: https://edpb.europa.eu/sites/edpb/files/files/file1/edpb_statement_2020_processingpersonaldataandcovid-19_en.pdf. Acesso em: 30 jul. 2020.
FAYYAD, U.; PIATETSKY-SHAPIRO, G.; SMYTH, P. Knowledge Discovery and Data Mining: Towards a Unifying Framework. KDD-96 Proceedings, p. 82-88, 1997.
FIDIS. Descriptive analysis and inventory of profiling practices. Disponível em: http://www.fidis.net/resources/fidis-deliverables/profiling/int-d72000/doc/4/. Acesso em: 16 jul. 2020.
FLORIDI, Luciano. Four challenges for a theory of informational privacy. Ethics and Information Technology, v. 8, n. 3, p. 109–119, 2006.
FLORIDI, Luciano. (Ed.). The Onlife Manifesto: Being Human in a Hyperconnected Era. Heidelberg-London-New York-Dordrecht: Springer, 2015.
FUSTER, Gloria González. The Emergence of Personal Data Protection as a Fundamental Right of the EU. Londres-Heildelberg-Nova Iorque: Springer, 2014.
FUSTER, Gloria González; GUTWIRTH, Serge. Opening up personal data protection: A conceptual controversy. Computer Law and Security Review, v. 29, n. 5, p. 531–539, 2013.
GELLERT, Raphaël. Understanding the notion of risk in the General Data Protection Regulation. Computer Law and Security Review, v. 34, n. 2, p. 279–288, 2018.
GLOBAL PRIVACY ASSEMBLY. GPA COVID-19 Response Repository. Disponível em: https://globalprivacyassembly.org/covid19/. Acesso em: 30 jul. 2020.
GRAY, Stacey. A Closer Look at Location Data: Privacy and Pandemics. Future of Privacy Forum, 2020. Disponível em: https://fpf.org/2020/03/25/a-closer-look-at-location-data-privacy-and-pandemics/. Acesso em: 20 abr. 2020.
GRUPO MAVE. Previsão de curto prazo nos estados brasileiros. Disponível em: https://covid-19.procc.fiocruz.br/prediction/. Acesso em: 28 jul. 2020.
HILDEBRANDT, Mireille. Defining Profiling: A New Type of Knowledge? In: GUTWIRTH, Serge; HILDEBRANDT, Mireille (Eds.). Profiling the European Citizen: Cross-Disciplinary Perspectives. New York: Springer, 2008. p. 17–45.
HILDEBRANDT, Mireille. Profiling and Identity of the European Citizen. In: HILDEBRANDT, Mireille; GUTWIRTH, Serge (Eds.). Profiling the European Citizen: Cross-Disciplinary Perspectives. New York: Springer, 2008. p. 303-343.
HILDEBRANDT, Mireille. Smart Technologies and The End(s) of Law. Cheltenham-Northampton: Edward Elgar, 2015.
HILDEBRANDT, Mireille. Privacy and Identity. In: CLAES, E.; DUFF, A.; GUTWIRTH, S. (Eds.). Privacy and the Criminal Law. Antwerpen-Oxford: Intersentia, 2006. p. 43–57.
HILDEBRANDT, Mireille. Privacy as protection of the incomputable self: From agnostic to agonistic machine learning. Theoretical Inquiries in Law, v. 20, n. 1, p. 83–121, 2019.
HOWE, Neil. A Special Price Just For You. Forbes. Disponível em: https://www.forbes.com/sites/neilhowe/2017/11/17/a-special-price-just-for-you/#11e3c39290b3. Acesso em: 19 jul. 2020.
IROLLA, Paul. Demystifying the Membership Inference Attack. Disponível em: https://medium.com/disaitek/demystifying-the-membership-inference-attack-e33e510a0c39. Acesso em: 27 jul. 2020.
KAMARINOU, Dimitra; MILLARD, Christopher; SINGH, Jatinder. Machine Learning with Personal Data. In: LEENES, Ronald et. al. Data Protection and Privacy: The Age of the Intelligent Machines. Oxford: Hart Publishing, 2017. p. 89-114.
KAMINSKI, Margot E.; MALGIERI, Giancarlo. Multi-layered explanations from algorithmic impact assessments in the GDPR. FAT* 2020 - Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, p. 68–79, 2020.
KIM, Nemo. South Korea struggles to contain new outbreak amid anti-gay backlash. The Guardian, 11 mai. 2020. Disponível em: https://amp.theguardian.com/world/2020/may/11/south-korea-struggles-to-contain-new-outbreak-amid-anti-lgbt-backlash?__twitter_impression=true. Acesso em: 26 jul. 2020.
KLOZA, Dariusz et al. Towards a method for data protection impact assessment: Making sense of GDPR requirements. d.pia.lab, Policy Brief n. 1, 2019, p. 2. Disponível em: https://cris.vub.be/files/48091346/dpialab_pb2019_1_final.pdf. Acesso em: 21 set. 2020.
KRANZBERG, Melvin. Technology and History: “Kranzberg’s Laws”. Johns Hopkins University Press, v. 27, n. 3, p. 544–560, 1986.
LOTEMPIO, Jonathan et. al. We Can Do Better: Lessons Learned on Data Sharing in COVID-19 Pandemic Can Inform Future Outbreak Preparedness and Response. Science & Diplomacy, v. 9, n. 2, jun. 2020. Disponível em: https://www.sciencediplomacy.org/article/2020/we-can-do-betterlessons-learned-data-sharing-in-covid-19-pandemic-can-inform-future. Acesso em: 27 ago. 2020.
MCDONALD, Sean M. Ebola: A Big Data Disaster - Privacy, Property, and the Law of Disaster Experimentation. The Centre for Internet and Society, n. 2016.01, 2016.
MANTELERO, Alessandro. From Group Privacy to Collective Privacy: Towards a New Dimension of Privacy and Data Protection in the Big Data Era. In: TAYLOR, Linnet; FLORIDI, Luciano; SLOOT, Bart van der (Eds.). Group Privacy: New Challenges of Data Technologies. Dordrecht: Springer, 2017. p. 139-158.
MANTELERO, Alessandro. Responsabilità e rischio nel Reg. UE 2016/679. Le Nuove Leggi Civili Commentate, v. XL, n. 1, p. 144–164, 2017.
MENDES, Gilmar Ferreira; COELHO, Inocêncio Mártires; BRANCO, Paulo Gustavo G. Curso de direito constitucional. 3. ed. São Paulo: Saraiva, 2008.
MENDES, Laura Schertel. Privacidade, proteção de dados e defesa do consumidor: linhas gerais de um novo direito fundamental. São Paulo: Saraiva, 2014.
MENDES, Laura Schertel. A Lei Geral de Proteção de Dados Pessoais: um modelo de aplicação em três níveis. In: SOUZA, Carlos Affonso; MAGRANI, Eduardo; SILVA, Priscila (Coords.). Lei Geral de Proteção de Dados – Caderno Especial. São Paulo: Revista dos Tribunais, 2019. p. 35-56.
MITTELSTADT, Brent. From Individual to Group Privacy in Big Data Analytics. Philosophy and Technology, v. 30, n. 4, p. 475–494, 2017.
NAKAGAWA, Liliane. LGPD: Bolsonaro sanciona e lei começa a valer nesta sexta-feira. Olhar Digital, 17 set. 2020. Disponível em: https://olhardigital.com.br/noticia/lgpd-bolsonaro-sanciona-e-lei-comeca-a-valer-nesta-sexta-feira/107251. Acesso em: 25 set. 2020.
OLIVER, Nuria et al. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Science Advances, v. 6, n. 23, p. 1–7, 2020.
PEIXOTO, Pedro S. et al. Potential dissemination of epidemics based on Brazilian mobile geolocation data. Part I: Population dynamics and future spreading of infection in the states of Sao Paulo and Rio de Janeiro during the pandemic of COVID-19. medRxiv, April, 2020. Disponível em: https://www.medrxiv.org/content/10.1101/2020.04.07.20056739v1.full.pdf. Acesso em 28 jul. 2020.
PRIVACY INTERNATIONAL. Quarantine enforcement and Covid-19. Disponível em: https://privacyinternational.org/examples/quarantine-enforcement-and-covid-19. Acesso em: 28 jul. 2020.
PYRGELIS, A.; DE CRISTOFARO, E.; ROSS, G. J. Privacy-friendly mobility analytics using aggregate location data. GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, n. 1, 2016. Disponível em: https://arxiv.org/pdf/1609.06582.pdf. Acesso em: 27 jul. 2020.
PYRGELIS, Apostolos; TRONCOSO, Carmela; DE CRISTOFARO, Emiliano. What Does The Crowd Say About You? Evaluating Aggregation-based Location Privacy. Proceedings on Privacy Enhancing Technologies, v. 2017, n. 4, p. 156–176, 2017.
PYRGELIS, Apostolos; TRONCOSO, Carmela; DE CRISTOFARO, Emiliano. Measuring Membership Privacy on Aggregate Location Time-Series. Proceedings of the ACM on Measurement and Analysis of Computing Systems, v. 2, n. 4, 2020.
QUELLE, Claudia. Privacy, Proceduralism and Self-Regulation in Data Protection Law. Teoria Critica Della Regolazione Sociale, v. 1, n. 14, p. 89–106, 2017.
RAHMAN, Zara. Dangerous Data: The Role of Data Collection in Genocides. The Engine Room, 2016. Disponível em: https://www.theengineroom.org/dangerous-data-the-role-of-data-collection-in-genocides/. Acesso em: 22 jul. 2020.
RICOEUR, Paul. O si-mesmo como outro. São Paulo: Martins Fontes, 2014.
RIOS, Rafael S.; ZHENG, Kenneth I.; ZHENG, Ming-Hua. Data sharing during COVID-19 pandemic: what to take away. Expert Review of Gastroenterology & Hepatology, 2020. Disponível em: https://www.tandfonline.com/doi/full/10.1080/17474124.2020.1815533. Acesso em: 27 ago. 2020.
ROCHA, Roberto. The data-driven pandemic: Information sharing with COVID-19 is 'unprecedented'. CBC, 2020. Disponível em: https://www.cbc.ca/news/canada/coronavirus-date-information-sharing-1.5500709. Acesso em: 25 jun. 2020.
SANDVIK, Kristin; RAYMOND, Nathaniel. Beyond the Protective Effect: Towards a Theory of Harm for Information Communication Technologies in Mass Atrocity Response. Genocide Studies and Prevention, v. 11, n. 1, p. 9–24, 2017.
SCHREURS, Wim et. al. Cogitas Ergo Sum: The Role of Data Protection Law and Non-discrimination Law in Group Profiling in the Private Sector. In: GUTWIRTH, Serge; HILDEBRANDT, Mireille (Eds.). Profiling the European Citizen: Cross-Disciplinary Perspectives. New York: Springer, 2008. p. 241-270.
SOLOVE, Daniel J. The digital person: technology and privacy in the information age. New York: New York University, 2004.
SOLOVE, Daniel. J. Understanding Privacy. Cambridge; London: Harvard University Press, 2008.
SPENCER, Shaun B. Privacy and Predictive Analytics in E-Commerce. New England Law Review, v. 49, p. 629-647, jan. 2015.
SUH, Jennifer J. et al. Distinguishing Group Privacy From Personal Privacy. Proceedings of the ACM on Human-Computer Interaction, v. 2, n. CSCW, p. 1–22, nov. 2018.
TAYLOR, Linnet. Safety in Numbers? Group Privacy and Big Data Analytics in the Developing World. In: TAYLOR, Linnet; FLORIDI, Luciano; SLOOT, Bart van der (Eds.). Group Privacy: New Challenges of Data Technologies. Dordrecht: Springer, 2017. p. 13-36.
THE TURNING POINT PUBLIC HEALTH STATUTE MODERNIZATION COLLABORATIVE. The Model State Public Health Act. Disponível em: https://law.asu.edu/sites/default/files/multimedia/faculty-research/centers/phlp/turning-point-model-act.pdf. Acesso em: 28 jul. 2020.
UNIÃO EUROPEIA. Regulamento (UE) nº 2016/679 do Parlamento Europeu e do Conselho, de 23 de abril de 2016, relativo à proteção das pessoas singulares no que diz respeito ao tratamento de dados pessoais e à livre circulação desses dados e que revoga a Diretiva 95/46/CE (Regulamento Geral sobre a Proteção de Dados). Jornal Oficial da União Europeia, Estrasburgo, 04/05/2016. Disponível em: https://op.europa.eu/s/oe9q. Acesso em: 28 ago. 2020.
VALENTINO-DEVRIES, Jennifer; SINGER-VINE, Jeremy Singer-Vine; SOLTANI, Ashkan. Websites Vary Prices, Deals Based on Users' Information. The Wall Street Journal. Disponível em: https://www.wsj.com/articles/SB10001424127887323777204578189391813881534. Acesso em: 19 jul. 2020.
WACHTER, S. Affinity Profiling and Discrimination by Association in Online Behavioural Advertising. Berkeley Technology Law Journal, v. 35, n. 2, 2020 (no prelo).
WEISER, Mark. Ubiquitous computing. Computer, [s.l.], v. 26, n. 10, p. 72-73, out. 1993.
WESTIN, Alan F. Privacy and Freedom. New York: Atheneum, 1967.
WORLD HEALTH ORGANIZATION. Q & A: How is COVID-19 transmitted?. Disponível em: https://www.who.int/news-room/q-a-detail/q-a-how-is-covid-19-transmitted. Acesso em: 25 jul. 2020.
ZANFIR, Gabriela. Forgetting About Consent. Why The Focus Should Be On “Suitable Safeguards” in Data Protection Law. In: GUTWIRTH, Serge; LEENES, Ronald; DE HERT, Paul. (Eds.). Reloading Data Protection Law: Multidisciplinary Insights and Contemporary Challenges. London: Springer, 2008. p. 237-257.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Para acesso ao conteúdo do periódico, favor entrar em contato com:
Editora Fórum
0800 704 3737
vendas@editoraforum.com.br